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Abstract: High detection efficiency appears to be associated with a high afterpulse probability for
InP-based single-photon avalanche diodes. In this paper, we present a new hybrid quenching
technique that combines the advantages of both fast active quenching and high-frequency
gated-passive quenching, with the aim of suppressing higher-order afterpulsing effects. Our results
showed that the hybrid quenching method contributed to a 10% to 85% reduction of afterpulses with
a gate-free detection efficiency of 4% to 10% at 1.06 µm, with 40 ns dead time, compared with
the counter-based hold-off method. With the improvement of the afterpulsing performance
of high-frequency gated single-photon detectors, especially at relatively high average detection
efficiencies with wide gate widths, the proposed method enables their use as high-performance
free-running detectors.

Keywords: single-photon detectors; single-photon avalanche diodes; avalanche photodiodes;
quenching circuits

1. Introduction

InGaAs/InP single-photon avalanche diodes (SPADs) have emerged with the need for
near-infrared single-photon detection by applications, such as quantum key distribution (QKD) [1]
and light detection and ranging (LiDAR) [2]. Compared to superconducting single-photon detectors
(SPDs), which require cryogenic cooling to reach a superconducting state [3], SPADs do not operate
at extremely low temperatures and are easy to integrate into systems. However, compared to other
detectors, such as superconducting SPDs, silicon-based SPADs, or photo multipliers, the afterpulsing
effects in InP-based SPADs induce more false counts. Afterpulsing refers to a second or more of
spurious avalanche pulses ignited by the spontaneous release of previous avalanche carriers trapped
by defects, and the probability of having an afterpulse soars as the detection efficiency increases [4].

Striking a balance between afterpulse probability and detection efficiency has been a long-lasting
problem for InGaAs SPADs. For a given SPAD, there are typically two approaches to restrain the
afterpulsing effects without sacrificing the detection efficiency. One is to hold the SPAD off for a period
of time (called the “hold-off time” or “dead time”) after an avalanche event. This method is present
in almost all free-running InP-based detectors. While the maximum detection efficiency is typically
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around 25% [5–7], or even reaches 35% [8,9] for free-running detectors, the afterpulse probability can
be as high as 1000% at a low hold-off time of 100 ns and 20% detection efficiency, forcing the user
to choose a longer hold-off time. As trapped carriers typically exhaust after tens of microseconds
at 223 K, a 20 µs hold-off time can sufficiently keep the afterpulse probability lower than 1% at a
detection efficiency of up to 20% [5]. However, such a long hold-off time apparently lowers the
maximum count rate, and makes a free-running detector unworthy of its name for it is often “dead”.
Therefore, balanced performance is possibly favored. For example, the detection efficiency should be
kept below 10% for a hold-off time of 100 ns [4]; otherwise, the hold-off time should typically be set to
1 µs or longer for a detection efficiency above 15% [4,8].

The second approach is to quench the SPAD more quickly so as to have a smaller amount of
avalanche carriers without sacrificing the count rate [10]. As is well known, SPADs have to work
under the condition called “Geiger mode”, i.e., the bias voltage is higher than the breakdown voltage,
to obtain a sufficient magnification factor for a single photon absorbed to generate a detectable
avalanche pulse. Once the avalanche process is triggered, it can be stopped only if the bias voltage
falls below the breakdown voltage, which “quenching” represents.

Among ordinary quenching techniques, gated-passive quenching is quite popular for
high-count-rate applications [11]. A periodical gating signal is used in this technique to enable
the SPAD to generate avalanche pulses by over-biasing it within the signal peaks and disable the
SPAD or quench the avalanche by under-biasing it outside the peaks. If there is an avalanche, the bias
voltage is quenched within the gate-off period. This quenching technique is still a “passive” one,
as no active feedback is involved. Compared with other passive or active quenching techniques,
the avalanche pulses generated with this technique are much shorter because the effective gate width
is only hundreds of picoseconds [12]. As a result, afterpulsing is typically suppressed to a one-digit
percent value [13–15].

As the dead time becomes nanosecond-scale, the count rate reaches hundreds of megahertz [14],
compared with state-of-the-art free-running InP-based detectors having a dead time of above 50 ns [8].
In addition, the peak detection efficiency reaches 50% at 251 K, 1310 nm [16], and 55% at 293 K,
1550 nm [15]. However, the high detection efficiency applies only when the majority of the incident
photons are within the short gate-on period. When used as a free-running detector, where the light
source does not have to be synchronized with the gate, the average detection efficiency falls to
approximately 20% of the peak, which is typically 4% to 7%, depending on the duty cycle of the gating
signal [14]. A smaller duty cycle contributes to a lower afterpulse probability but a lower average
detection efficiency as well. This technique can still be used in free-running applications, such as
3D LiDAR [17], which require low afterpulse probability and low dead time, with a relatively low
detection efficiency.

In this paper, a hybrid quenching method is presented, which combines gated-passive quenching
and our fast active-quenching technique with the aim of reducing high-order afterpulsing effects at
high detection efficiency in single-photon detectors based on InGaAs(P)/InP SPADs. SPDs with two
models of InGaAs(P) SPADs of different targeting wavelengths and active areas were built with the
proposed hybrid-quenching circuit, and were optimized for high average detection efficiency and low
afterpulse probability in free-running applications. The performance of hybrid quenching and the
proposed SPDs were evaluated, in particular for the afterpulsing probabilities, at various conditions
by comparing the results of different methods.

2. Method

The core of the detector is the SPAD driven by the hybrid quenching circuit. The circuit
was designed with a basic concept of adding active quenching to a high-frequency gated-passive
quenching circuit. The avalanche can be quenched by high-frequency gated-passive quenching within
a nanosecond, and hence the number of trapper avalanche carriers is significantly lower than with other
techniques. However, the following gates are reopened every next nanosecond, and the afterpulses are
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likely to occur in those gates especially when the excess bias is high. These afterpulses will trigger
more afterpulses later, and eventually contribute to a large number of afterpulses. This phenomenon
is usually called the higher-order afterpulsing effect [18]. When active quenching is added with
high-frequency gated-passive quenching, it can maintain the excess bias at a value below break
down voltage for a short period of time, e.g., the first tens of nanoseconds, which physically closes
the following tens of gates after an avalanche event and prevents the release of afterpulses within
these gates.

Sophisticated design is required to apply a DC bias, high-frequency gating signal,
and active-quenching signal to the SPAD, along with the avalanche current pick-up circuit. On the
one hand, one cannot simply turn off the high-frequency gating signal after an avalanche to achieve
this goal, as the DC bias voltage can be above the breakdown voltage, and doing this would leave
the SPAD with merely passive quenching. On the other hand, both the active-quenching signal and
high-frequency gating signal can feed through the junction capacitor of the SPAD, and such transient
responses become noise in the output signal of the SPAD. Many techniques have been developed to
cancel this kind of noise. The tunable self-differencing method [19] is preferred for high-frequency
gating due to its excellent attenuation of noise as well as its low distortion of the avalanche pulse,
and hence outstanding performance was achieved [15]. Low-pass filtering is another popular option
for noise suppression in high-frequency gating schemes [20], and was developed to be compact and
robust [12]. However, these methods alone are not applicable for noise induced by the non-periodical
active-quenching signal.

Another favorable method is capacitor balancing [21], including diode balancing [22] and the
dummy-SPAD balancing [14] technique. This method is suitable for a wide frequency range and
a variety of designs from low-frequency gating [23] to variable high-frequency gating [21], and even for
free-running SPDs [4]. In particular , when the capacitor-balancing method is used with high-frequency
gating, low-pass filters are often applied as a supplement to remove the residual higher-order
component of the noise [14,21].

We chose the latter method for the gated-passive quenching part of our design, as shown in
Figure 1. The high-frequency gating signal is generated by the multi-gigabit transmitter of the
field-programmable grid array (FPGA, Xilinx XC7A35T-2CSG325I). The data rate are set to 6.25 Gbps,
and the data pattern is “0011” to obtain a clock rate of 1.5625 GHz. The gating signal is amplified by a
two-stage power amplifier (PA) with a total gain of 34 dB and a bandwidth of 6 GHz into approximately
14 Vpp, and this signal passes through a high-pass filter (HPF) of 1.25 GHz to eliminate the wide-band
noise coming out of the transmitter of the FPGA.
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Figure 1. Schematic of the proposed quenching circuit combining gated-passive and active quenching
techniques. AQ: active quenching. CMP: comparator. DFF: D-type flip-flop register. E-pHEMT:
enhancement-mode pseudomorphic high electron mobility transistor. FPGA: field-programmable gate
array. GPQ: gate-passive quenching. HPF: high-pass filter. LE: latch enable. LNA: low-noise amplifier.
LPF: low-pass filter. PA: power amplifier. SPAD: single-photon avalanche diode.

Both the gating signal and the DC bias are applied on the anode of the SPAD through a coupling
capacitor CC and a current-limiting resistor RL, respectively. For the avalanche current pick-up and
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noise canceling, the cathode and the dummy capacitor CD are connected to the primary winding of a
wide-band radio-frequency (RF) transformer TC, and hence only the avalanche current is transformed
to the secondary side. The avalanche signal with noise residue is filtered by two 900-MHz low-pass
filters, and is amplified by 31 dB using a wide-band low-noise RF amplifier before entering the
comparator. To minimize the delay of the signal conditioning chain, the low-pass filters are low
temperature co-fired ceramic (LTCC) ones with a small size of 2.0 mm by 1.2 mm, and are installed on
the printed circuit board along with the amplifier and the transformer.

The active-quenching part is shown in Figure 1. A D-type flip-flop register (DFF) is used for
holding off the SPAD once triggered by the comparator. The output of the DFF is amplified by
an enhancement-mode pseudomorphic high electron mobility transistor (E-pHEMT) to quench the
SPAD. The hold-off time is controlled by the FPGA, and the reset of the SPAD is performed by resetting
the DFF. The active-quenching signal coming out of the E-pHEMT is transmitted to the cathode of the
SPAD through the center tap of the primary winding of the RF transformer. The active-quenching
signal passes through both the junction capacitor of the SPAD and the dummy capacitor, with two
identical transient currents flowing toward opposite directions in the winding. Thus, ideally there is
no noise current flowing through the secondary winding, and the noise is removed.

However, as the transformer is not ideal, and noise residue induced by the active-quenching
signal can pass through LPFs and the LNA, becoming amplified and distorted but not filtered out.
As the noise lasts only several nanoseconds, the latch function of the comparator is enabled during
reset to lock itself until the noise residue settles down, to prevent false triggering without increasing
the discrimination threshold.

3. Experimental Setup

An experimental system was built for the characterization of the SPD, shown in Figure 2.
Two types of InP-based SPADs were tested: InGaAs SPAD (PGA-300, Princeton Lightwave) with
an active area of 25 µm diameter, suitable for 0.95 to 1.65 µm photon detection; and InGaAsP SPAD
(PGA-384, Princeton Lightwave, Cranbury, NJ, USA) with a 80 µm diameter, suitable for 0.95 to
1.1 µm photon detection. The PGA-series devices are commercially available InP-based SPADs
specifically designed for single-photon detection. They have demonstrated good overall performance;
however, they both have the typical problem of high afterpulsing and a long afterpulsing lifetime,
which poses a high demand on the quenching electronics. PGA-300 and PGA-384 share similar
structures and multiplication layers; however, they have different active areas and absorbing layer
materials. The differences make them good examples for a comparative performance evaluation of the
proposed quenching method.
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Figure 2. The experimental setup for the performance evaluation of the proposed single-photon
detector (SPD). TCSPC: time-correlated single-photon counter. The dashed lines represent single-mode
optical fibers, and the solid lines represent coaxial electrical connections.

The photon source used in the experiments was a pulsed laser source (PDL 800-B, picoQuant,
Berlin, Germany) with interchangeable laser diode heads of 1.06 and 1.55 µm. As the SPD is proposed
for both gated and free-running applications, the trigger source of the laser has two options. One is
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50 kHz synchronized with the 1.5625 GHz gating signal, which results in one laser pulse every 3125th
gate. A 10-ps precision programmable delay module (SY89295U, Microchip, Chandler, AZ, USA) was
inserted between the laser and the trigger source to adjust the time of arrival of the photon in the
gate. The other laser trigger source was 39.0625 kHz from an independent oscillator, unsynchronized
with the gating signal. The laser was attenuated to 1 photon per pulse on average for afterpulsing
measurements, and was attenuated to 0.1 photon per pulse on average for other tests if needed.
A dual-channel time-to-digital converter with 36 ps resolution and 3.75 ns dead time and two gated
counters with 5 ns dead time were all embedded in the FPGA for performance evaluation, except for
the jitter, which was measured with a high-resolution time-to-digital converter (quTAG, quTools,
München, Germany) set to 2 ps bin resolution.

The performance of the proposed SPD can be characterized by the gate width, photon detection
efficiency (PDE, η), dark count rate (DCR, Cd), afterpulse probability, and timing jitter. As the SPD aims
at free-running applications, the dark count rate in this paper is represented by the plain number of
raw dark counts per second instead of the dark count probability per gate. Considering the condition
of gate-free detection, the PDE can be calculated here simply by:

η =
Ci − τw fLCd

µ fL
(1)

where Cd is the raw count rate without illumination, Ci is the count rate within the illuminated window
in the time histogram obtained with time-correlated single-photon counter (TCSPC), τw is the width of
the illuminated time window, fL is the repetition rate of the pulsed laser, and µ is the average number
of photons per pulse.

Afterpulsing is evaluated through the total afterpulse probability and the time distribution of the
afterpulses, i.e., the afterpulse probability density. The time distribution of the afterpulse probability
is represented by the afterpulse probability per unit time (e.g., 1 ns) after a certain time t, and can be
calculated from the time histogram of count events obtained by TCSPC, with the following equation:

Pap (t) =
1
τb

× C (t)− τb fLCd
Ci − τw fLCd

, (2)

where C (t) is the count rate within the time bin at the time t after the photon detection, and τb is the
bin width of the histogram. The total afterpulse probability was then calculated through integrating
the afterpulse probability density.

In order to assess the performance of hybrid quenching, the measurements were implemented
under high-frequency gated operation with additional hold-off time applied using three methods
separately: a minimum hold-off time limited by hardware, a counter-based hold-off time by screening
count events, and true hold-off times by active quenching. Post-processing dead time using software
has been proven effective [15], and is equivalent to count-based dead time in our experiments.

4. Results and Discussion

For a high-frequency gated detector to be used both as a gated detector and a free-running one,
the gate width first needs to be characterized. The shape of effective gates under different excess bias
for PGA-300 and PGA-384 are shown in Figures 3a and b, respectively, and the effective gate widths
were calculated accordingly, shown in Figure 3c. Unlike the results in other studies, the gate widths of
the proposed detector were generally large, up to 210 ps, as shown in Figure 3c.

Typically, the gate width is expected to be as narrow as possible for synchronized gated detection
in order to have a lower afterpulse probability. Sinusoidal or harmonics-synthesized [16] pulsed gating
signals with large amplitude are often used for this reason. For example, an afterpulse probability of
as low as 1.5% was reported with a gate width up to 100 ps, which is only 13% of the 1.3 GHz gate [14].
However, as one of the goals of the research was to gain higher detection efficiency for free-running
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applications, a square-wave gating signal was selected on purpose instead of a sine wave to have
a larger effective gate width of around 200 ps, which is 31% of the gate. Under synchronous detection
circumstance, a wider gate provides larger tolerance to the fluctuation of the timing of incident photons,
which could be introduced by the fiber in the QKD system, for example.
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Figure 3. The photon detection efficiency (PDE) of (a) PGA-300 and (b) PGA-384 within the gate at
various excess bias voltages, and (c) the full-width at half-magnitude (FWHM) of the effective gate,
all measured at 1.06 µm wavelength, 223 K.

In addition, the integration of the active-quenching technique into gated-passive quenching
extends the usable excess bias range of the SPD to achieve even higher detection efficiency, at the
cost of a longer dead time. For instance, the results at 5 V or above in Figure 3a–c were all obtained
with the help of active quenching at a 1 µs hold-off time; otherwise the false counts (including the
dark counts and afterpulses) would have gone out of control for the current setup. However, the false
count rate will dramatically increase if the excess bias is tuned higher, without an obvious increase
of detection efficiency. Since there is always a dead time, an extremely large number of false counts
could dominate most of the detection gates, and inhibit the detection of photons by forcing the SPAD
to be “dead” too often. Besides, compound semiconductor transistors, such as GaAs E-pHEMT,
have a lower break-down voltage than silicon ones, which sets the upper limit of the excess bias.
Therefore, the maximum detection efficiency is limited both by the false count rate and the circuit.

Both PGA-300 and PGA-384 were operable under the 1.56 GHz gating signal; however, the effectiveness
of the gates was different, as can be seen from Figure 3a,b. Despite the similar peak detection efficiency
of approximately 35%, the maximum operable excess bias of PGA-384 was lower. Here, the description
“maximum operable” refers to the value when the peak detection efficiency keeps rising while the dark
count rate does not soar. The tendency of broadening of the gate was different for the two devices.
While PGA-300 had an ordinary “Gaussian” appearance (Figure 3a), PGA-384 exhibited an extension
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of the detection closer to the tail of the gate with a flat-top detection peak at 5 V excess bias (Figure 3b).
The full-width at half-magnitude (FWHM) of the effective gate rose more rapidly for PGA-384 with
the increase of the excess bias (Figure 3c). These results indicate that the gate was less effective for
PGA-384 due to its larger effective area, and the afterpulse probability was then higher than that of
PGA-300.

The following results were all obtained using incident photons unlocked to the gating signal,
in order to demonstrate the performance of the SPD in free-running mode. For PGA-384, the excess
bias of 2 to 5 V corresponded to a gate-free PDE of 3.5% to 13.4% at 1.06 µm, and for PGA-300, 2 to 6 V
corresponded to a gate-free PDE of 2% to 13% at 1.06 µm, or 1.4% to 9.3% at 1.55 µm.

Finding suitable conditions and the optimization of the hold-off time with active quenching
requires an investigation of the time distribution of the afterpulse probability. For instance,
the afterpulse probabilities per nanosecond as a function of time for PGA-300 and PGA-384, both at
PDE = 8%, 1.06 µm, are shown in Figure 4. The small bumps around 13 ns are regarded as a result of
the pile-up effect due to the dead time of the detector and measurement hardware, and also as a sign
of the high afterpulse probability.
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Figure 4. Time distribution of the afterpulse probability of PGA-300 and PGA-384, with and without
active quenching (AQ), measured at PDE = 8%, λ = 1.06 µm, 223 K.

The drawback of having a larger detection area is clear: the afterpulse probability without active
quenching for PGA-384 was approximately 200% of that of PGA-300. However, when the integrated
active-quenching circuit was working at 50 ns hold-off time, the afterpulse probability distribution
of PGA-384 was close to that of PGA-300. The apparent reduction of afterpulsing is attributed to the
suppression of the afterpulses generated originally during the first 50 ns by active quenching. The total
afterpulse probability within the range from 5 to 50 ns was only 25%, far from 200%, which indicated a
much higher afterpulse probability during the first absent 5 ns. In comparison, there was no distinct
difference between the afterpulse distribution with or without active quenching for PGA-300 under
the condition of PDE = 8%, 1.06 µm, which indicated a much lower afterpulse probability than that
of PGA-384 during the first 5 ns after detection, and hence contributed to the negligible amount of
higher-order afterpulses. In general, the function of active quenching helped reduce the afterpulsing
significantly for SPADs that suffer from the higher-order afterpulsing effect, such as PGA-384.

The afterpulsing performance with active-quenching-based dead time and that with counter-based
dead time were compared, as shown in Figure 5. A counter-based dead time of 40 ns gave up to a 50%
reduction of the total afterpulse probability compared to the 5 ns dead time, and 100 ns contributed to
a 66% reduction, at a gate-free PDE of approximately 10%, 223 K for PGA-384. In comparison, with our
fast active-quenching technique integrated, the SPD had afterpulse probabilities of only 6.2% and
3.7% of the 5-ns value at 40 and 100 ns dead time, respectively, or 14.3% and 31.2% of the values with
counter-based dead times of 40 and 100 ns, respectively, which indicated an up to 85% reduction of the
afterpulses. When the detection efficiency was relatively low, the advantage of using active quenching
was not clear, e.g., a 20% reduction from the 5-ns counter-based value or a 10% reduction from the
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40-ns counter-based value, at approximately 4% detection efficiency. In general, the more severe was
the afterpulsing effect, the larger improvement the technique made.
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Figure 5. The total afterpulse probability as a function of photon detection efficiency at different
hold-off times (τho), 223 K, λ = 1.06 µm, with PGA-384. Hold-off time was applied on the SPAD by
active quenching, or simply on the counter by the counter itself, as specified in the legend.

In addition, similar to the gated condition, the proposed quenching technique extended the
maximum gate-free photon detection efficiency at the cost of a longer dead-time, which makes the
detector more flexible for practical applications.

Compared with true free-running detectors, e.g., negative-feedback avalanche diodes (NFADs),
the hybrid-quenching technique exhibited a superior afterpulsing performance. Typically, NFADs
have a recovery time of 100 ns, which is equivalent to a 100 ns hold-off time. The afterpulse probability
of NFADs was reported as approximately 10% at 4% PDE, or 40% at 8% PDE, at 1.55 µm and
236 K [24]. Our results with PGA-300 at 1.55 µm and 223 K showed that the afterpulse probability
was 4.5% at 4% PDE, and was 18.5% at 8% PDE, which are around 50% of the results of NFADs.
However, the maximum gate-free detection efficiency of the proposed SPD with PGA-300 was only
9.3% at 1.55 µm, which is much lower than that of true free-running SPDs with at least 20% PDE.
As this is due to the low duty cycle of the high-frequency gating, one may turn it off and use only
active quenching with a longer hold-off time, such as 5 µs, if a higher PDE is desirable.

A lower afterpulse probability contributed to a significantly lower dark count rate (DCR) at high
excess bias as well. The raw dark count rates of both PGA-384 and PGA-300 as a function of gate-free
photon detection efficiency at different hold-off times are shown in Figure 6. Since PGA-384 has
an InGaAsP absorption layer with a larger band gap than that of PGA-300 with InGaAs, it showed
a generally lower DCR of 100 to 20 kHz, compared with PGA-300, which showed a DCR of 3 to 700 kHz.
However, PGA-384 had a more rapid growth of the dark count rate with a higher bias and lower
hold-off time, and its DCR could possibly be higher than that of PGA-300 under extreme conditions.
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Figure 6. The raw dark count rate of PGA-384 and PGA-300 as a function of the gate-free photon
detection efficiency at different hold-off times, 223 K, λ = 1.06 µm, with active quenching.
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To our understanding, there are two reasons for this phenomenon. On the one hand, clearly a large
portion of dark counts were attributed to dark-count-induced afterpulses. PGA-384, which has a
larger detection area, had a higher afterpulse probability at high excess bias and a low hold-off time,
and consequently the afterpulse-induced dark counts easily went out of control under such conditions.
On the other hand, trap-assisted tunneling (TAT) is considered to be responsible for another large
portion of dark counts, which becomes severe rapidly with excess bias. PGA-384 has a larger InP
multiplication layer and accordingly more traps, which gives rise not only to afterpulses but also to
TAT-induced dark counts.

Compared with our free-running SPDs with exactly the same SPAD device [25], high-frequency
gated SPDs had relatively higher DCRs at similar detection efficiencies and temperatures under
gate-free conditions. The difference in the DCR should also be attributed to TAT. On the one hand,
the dark counts induced by thermally generated carriers in the absorption layer share similar avalanche
mechanisms with photon detection, and hence are considered similar in number for both detectors at
the same detection efficiency and temperature. On the other hand, dark counts induced by TAT in
the InP multiplication region are regarded as the dominant source of dark counts at high excess bias
voltage [24]. For high-frequency gated detectors, though the average detection efficiency was relatively
low, the excess bias for photon detection was as high as 3 to 7 V, while free-running detectors required
only approximately 1.5 to 2.5 V to achieve the same detection efficiency range of 6% to 13% [25].
Nevertheless, the afterpulses, at minimum, were suppressed to achieve a relatively lower DCR with
the help of active quenching.

Another merit of using the proposed hybrid-quenching technique in free-running applications
is a low and relatively fixed timing jitter, compared with true free-running detectors with
passive-quenching or active-quenching techniques. In those detectors, low timing jitter requires
high excess bias, e.g., 5 V for 172 ps [25], along with high afterpulse probability, in particular at low
dead times. The timing jitter of PGA-300 is shown in Figure 7. The jitter FWHM varied slightly from
167 to 192 ps within the range of 2 to 6 V. This is useful when one wants to achieve a low dead time,
low afterpulse probability, and low jitter in free-running mode at the same time, with a reasonable
detection efficiency of 10%, for example. The time of the detection peak varied only by tens of
picoseconds, and this indicates that the delay was not related to the excess bias. This is likely beneficial
in applications, such as LiDAR, where an adaptive detection efficiency is required and a change in the
timing delay or jitter is less acceptable.
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Figure 7. The timing jitter of PGA-300 at different excess biases, 223 K, λ = 1.06 µm.

5. Conclusions

In this paper, a hybrid quenching method was presented to combine the advantages of both active
quenching and high-frequency gated-passive quenching. By using a high-bandwidth RF transformer
with a center tap and high-speed signal conditioning circuits, the excess bias of the SPAD could be
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quickly lowered for an adjustable hold-off time after a detection. Our results demonstrated that the
afterpulses were successfully suppressed within the first tens of nanoseconds of true hold-off time by
hybrid quenching for SPAD PGA-384, and the following higher-order afterpulses were prevented. As a
result, this contributed to a significantly lower afterpulse probability and dark count rate compared
with the counter-disabling method. The maximum detection efficiency was also improved due to the
suppression of false counts at high excess bias voltage. Besides, as the peak excess bias required for
high-frequency gating to reach a certain gate-free detection efficiency was much higher than that of
the free-running condition, the proposed method demonstrated superior jitter performance to those of
InP-based free-running SPDs at similar detection efficiencies.

However, there are also drawbacks to this method. The method was not equally effective for use
with PGA-300, which intrinsically has a lower afterpulse probability than that of PGA-384. The dark
count rate rose faster with excess bias, and was essentially higher than that of the free-running
condition because of the high peak excess bias required for the method.

In addition, the proposed method can also be applied on not only PGA-384 and PGA-300 but also
other high-frequency gated detectors with different application scopes for lower afterpulsing at high
detection efficiencies, or for a higher maximum detection efficiency.
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