〈综述与评论〉

InGaAs/InP 红外雪崩光电探测器的研究现状与进展

胡伟达,李 庆,温 洁,王文娟,陈效双,陆 卫

(中国科学院上海技术物理研究所,红外物理国家重点实验室,上海 200083)

摘要:近年来,量子卫星通信、主动成像等先进技术的应用取得了较大的进展,InGaAs/InP 雪崩光电 探测器作为信息接收端的核心器件起到了至关重要的作用。本文系统介绍了 InGaAs/InP 雪崩光电探测 器的工作原理,分析了器件结构设计对暗电流特性的影响,对盖格模式下多种单光子探测电路进行了 综述,同时对新型金属-绝缘体-金属结构设计的研究进展进行了介绍和展望。 关键词: InGaAs/InP 红外雪崩光电探测器;暗电流机制;单光子探测;表面等离共振效应 中图分类号:O572 文献标识码:A 文章编号:1001-8891(2018)03-0201-08

Recent Progress in InGaAs/InP Infrared Avalanche Photodetectors

HU Weida, LI Qing, WEN Jie, WANG Wenjuan, CHEN Xiaoshuang, LU Wei (State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics of CAS, Shanghai 200083, China)

Abstract: In recent years, quantum satellite communication and active imaging, where InGaAs/InP infrared avalanche photodetectors play a key role in single-photon detection, have progressed considerably. This review provides a detailed introduction to the basic principle of InGaAs/InP infrared avalanche photodetectors. The impact of the device structure characteristics on the dark current avalanche mechanism is summarized. Different circuits related to single-photon detection technology, running in Geiger mode, are presented. Several novel metal-insulator-metal structures are introduced for enhancing the quantum efficiency of InGaAs/InP infrared avalanche photodetectors, and their prospects are discussed.

Key words: InGaAs/InPinfrared avalanche photodetectors, dark current mechanism, single-photon detection, surface plasmon resonance effect

0 引言

近红外波段蕴含着丰富的大气中水汽及太阳反射光谱信息,在气象学、夜视、军事和通讯等领域有 非常重要的应用^[1-3]。因此,近红外探测技术的发展及 应用一直是关键的研究课题。现在用于红外探测的材 料有 HgCdTe、InSb、InGaAs、量子阱、二类超晶格, 以及一些新兴的低维材料二维黑砷磷、二维黑磷、纳 米线等,但考虑大气透射窗口传输特性、探测器工作 温度及探测效率等因素,InGaAs 红外探测器是目前近 红外波段尤其是 1.55 µm 通信波长探测性能最优的探 测器^[4-10]。InGaAs 是由 III-V 族材料 InAs 和 GaAs 以 任意配比形成的赝二元系统,为直接带隙半导体材 料,随着 Ga 组分 x 的变化, In_{1-x}Ga_xAs 的禁带宽度

收稿日期: 2018-01-10; 修订日期: 2018-03-12.

由 1.43 eV 连续变化到 0.35 eV,覆盖了 0.87 μ m~3.5 μ m 的近/短波红外波段,同时晶格常数由 GaAs 的 5.6533 Å 变化到 InAs 的 6.0583 Å^[11-12]。In_{0.53}Ga_{0.47}As 的截止波长为 1.7 μ m,晶格常数与 InP (5.87 Å) 衬底 较为匹配,目前 In_{0.53}Ga_{0.47}As 在 0.9~1.7 μ m 波段得 到较好的应用。

雪崩光电探测器(Avalanche photodetector, APD) 的工作原理是利用 p-n 结在较大反偏电压时,光子入 射至结区使电子从价带跃迁到导带,在电场的作用下 电子碰撞原子形成电子-空穴对,新产生的电子-空穴 对获取动能,产生额外的电子-空穴对并持续发生。 由于较少光子甚至单个光子的入射都能触发雪崩倍 增过程,引起宏观上电流的变化,因此雪崩光电探 测器具有极高的灵敏性和较高的探测效率,在弱光

作者简介: 胡伟达(1979-),男,研究员,博士生导师,主要从事红外探测器的机理、研制及应用研究。E-mail: wdhu@mail.sitp.ac.cn。 基金项目: 国家杰出青年基金项目(61725505)。

第40卷 第3期	红外技术	Vol.40 No	o.3
2018年3月	Infrared Technology	Mar. 201	18

探测甚至单光子探测有非常高的应用潜力^[13-15]。 InGaAs/InP 雪崩光电探测器有高灵敏性、高探测率 的特点,又可以在近红外波段工作,在 3D 雷达成像、 军事、通讯等领域得到广泛的应用,其单光子探测 能力也是近年来迅速发展的量子保密通信领域核心 技术之一^[16-17]。然而,目前 InGaAs/InP 雪崩光电探测 器也存在较多问题,例如暗电流机理不清楚、用于单 光子探测的暗计数较大、淬灭时后脉冲及噪声等都限 制了其探测能力。因此,近些年来,国内外对于 InGaAs 材料的生长、雪崩光电二极管的制作工艺、结构设计、 性能表征、测试电路和新型表面等离激元结构设计等 方面进行了非常多的研究。

本文详细介绍了 InGaAs/InP 雪崩光电探测器暗 电流的作用机理、器件结构及设计对暗电流影响、单 光子测试方法及新型表面等离激元结构设计提高器 件性能等方面,并综述了 InGaAs/InP 单光子雪崩光电 探测器新的研究进展,最后展望了未来高性能 InGaAs/InP 雪崩光电探测器的发展趋势。

1 InGaAs/InP 雪崩光电探测器理论基础

雪崩光电探测器的工作原理是利用载流子的雪崩倍增效应,如图 1(a),当 PN 结在较大的反偏电压时,电子或者空穴通过扩散进入耗尽区,由于电场的作用,会获取较大的能量。它们获取的能量与所加偏压大小和漂移距离相关,当它们的能量足够大,并与耗尽区内晶格原子发生碰撞会产生新的电子-空穴对,新的电子或者空穴会撞击其他原子,产生下一轮碰撞电离,整个过程称为雪崩倍增。InGaAs/InP 雪崩光电二极管通常采用吸收层与倍增层分离的结构,它的雪崩倍增过程如图 1(b),当光子入射至器件吸收层时,产生光生电子-空穴对,电子空穴在电场作用下分别向

相反方向漂移,在漂移过程中被电场加速与周围晶格 产生碰撞电离,同时碰撞电离产生新的载流子继续被 电场加速,进而产生下一轮碰撞电离。这一过程在空 间电荷区反复发生,直至载流子漂移离开该区域被两 端的电极收集,从而在器件两端产生电流信号,实现 探测器的光电信号转换。利用雪崩倍增效应,可以使 探测器拥有较高的灵敏度和增益,在弱光探测、高速 成像等领域的应用有极大的优势。

1.1 InGaAs/InP 雪崩倍增模型

InGaAs/InP 雪崩探测器主要工作原理是利用吸收区产生载流子,并在倍增区获取较大能量后发生碰撞电离,它通常将 InGaAs 作为雪崩光电探测器的吸收层, InP 作为倍增层。雪崩倍增因子 *M*(*x*)表示距离倍增区 *x* 处一个电子空穴对通过碰撞电离产生的载流子数目,其表达式首先由 McIntyre 推导得到^[18]:

$$M(x) = \frac{e^{-\int_{x}^{w} (\alpha - \beta) dx'}}{1 - \int_{0}^{w} \alpha e^{-\int_{x'}^{w} (\alpha - \beta) dx'} dx'}$$
(1)

式中: w 为雪崩倍增区宽度; α、β分别为 InP 电子和 空穴的电离系数。对于 InP 材料电子与空穴的电离系 数与电场相关,分别为^[19]:

$$\alpha = 2.93 \times 10^6 \,\mathrm{e}^{-2.64 \times 10^6/E} \tag{2}$$

$$\beta = 1.62 \times 10^6 \,\mathrm{e}^{-2.11 \times 10^6/E} \tag{3}$$

式中:E表示电场强度,研究发现当电场E在 3.6×10⁵ 至 5.6×10⁵ V/cm 之间时,电离系数与实验结果较为吻合。令 $k=\beta/\alpha$,为空穴电子的碰撞电离系数之比,定义f为倍增噪声,经推导可得到噪声的表达式^[20]:

202

$$f_{\text{electron}} = 2eI_0 M^3 \left[1 + \frac{1-k}{k} \left(\frac{M-1}{M} \right)^2 \right] \quad k \ll 1 \quad (4)$$

$$f_{\text{hole}} = 2eI_{\text{w}}M^{3}\left[1 - (1 - k)\left(\frac{M - 1}{M}\right)^{2}\right] \quad k \gg 1 \quad (5)$$

式中: I_0 和 I_w 分别为 M=1时电子注入和空穴注入时的电流; M为雪崩倍增因子。当k较大时($\gg1$),可以设计空穴注入型 APD,此时的倍增噪声较小; 当k较小时($\ll1$),可以设计电子注入型 APD,降低倍增噪声。对于 InP,空穴的注入碰撞电离系数大于电子的碰撞电离系数,因此一般采用空穴注入型结构设计 InGaAs/InP APD。

1.2 InGaAs/InPAPD 暗电流模型

用于单光子探测的 APD 器件,工作在盖格模式 (Geiger mode)下,此时器件所加反偏电压大于雪崩 击穿电压,器件电场将非常大,此时器件的光电流增 益较大。但是器件暗电流在较大电场时,也会有较大 的增益,使得器件的暗计数也会非常大,从而影响了 器件探测性能。暗计数较大的原因之一是器件暗电流 及其增益较大,因此降低器件暗电流才会提高器件性 能。InGaAs/InPAPD 暗电流的来源主要分为扩散电流 Idiff、产生复合电流 Igr、带间隧穿电流 Ibbt、缺陷辅助 隧穿电流 Itat、雪崩电流 Iava 和表面漏电流 Isurf。其中 扩散电流和产生复合电流与温度相关,随着温度增大 而增大;带间隧穿电流与材料禁带宽度有关,与温度 的关系不大;缺陷辅助隧穿电流与缺陷浓度及能级位 置相关; 表面漏电只与器件表面工艺有关, 一般不会 发生雪崩。根据半导体物理的基本原理,各暗电流组 分的表达式分别如下[21-23]:

$$I_{\rm diff} = Aqn_{\rm i}^2 \sqrt{\frac{kT}{q}} \left(\sqrt{\frac{\mu_{\rm n}}{\tau_{\rm n}}} \cdot \frac{1}{N_{\rm a}} + \sqrt{\frac{\mu_{\rm p}}{\tau_{\rm p}}} \cdot \frac{1}{N_{\rm d}} \right) \left(\exp\left(\frac{qV_{\rm d}}{kT}\right) - 1 \right)$$
(6)

$$I_{\rm gr} = \left(qn_{\rm i} / \tau_{\rm eff}\right) \left(1 - \exp\left(-\frac{qV_{\rm d}}{2kT}\right)\right) \tag{7}$$

$$I_{tun} = I_{bbt} + I_{tat} = \gamma A \exp(-\theta m_0^{1/2} E_g^{3/2} / (q\hbar E_m)) (8)$$

式中: A 是结面积; N_a 和 N_d 分别代表 n 区与 p 区的 掺杂浓度; n_i 是本征载流子密度; V_d 是器件所加偏压; $\tau_n 与 \tau_p$ 分别指电子与空穴寿命; $\mu_n 与 \mu_p$ 分别指电子与 空穴的迁移率; τ_{eff} 为少子寿命; E_m 为结区最大电场 强度; $p 和 \theta$ 是相应的参数化表述。 当发生雪崩时,总暗电流为 $I_d = I_{ava} + I_{surf}$, $I_{ava} = M(I_{diff} + I_{gr} + I_{bbt} + I_{tat})$ 。因此考虑各电流组分与温度、缺陷、表面积等相关性,可以通过设计实验分离器件暗电流成分。

表征雪崩光电探测器性能的参数包括暗计数、量 子效率、探测效率、增益和后脉冲等,这些参数均与 InGaAs/InP 材料质量和测试方法相关。暗计数是指在 没有光子入射时,探测器发生雪崩的几率,它与器件 的暗电流紧密相关,表面漏电、产生复合电流、扩散 电流及隧穿电流都会导致器件暗计数的增大;量子效 率是指光子入射至 InGaAs 吸收层,在吸收层产生载 流子的效率,它能表征 InGaAs 材料的吸收系数;探 测效率指光子产生的载流子最终发生雪崩击穿的几 率;增益是表征器件在工作电压下光电流/暗电流比初 始光电流/暗电流的增大倍数;后脉冲是指材料缺陷中 俘获的载流子再释放引起的雪崩击穿效应。表1是普 林斯顿光波公司(Princeton Lightwave)生产的典型 InGaAs/InP 雪崩光电探测器性能参数。

- 表1 普林斯顿光波公司典型InGaAs/InP雪崩光电探测器性能 参数
- Table 1
 Typical performance parameters of InGaAs/InP APD in

 Princeton Lightwave
 Princeton Lightwave

	5			
Model	PGA-025u	PGA-016u	PGA-080u	
	-1550TO	-1550TFT	-1064TO	
Temperature/	222	222	222	
Κ	235	223	233	
Wavelength/	1550	1550	1064	
μm	1550	1550	1004	
Detection	20	20	20	
efficiency/%	20	20	20	
Dark Count	100	75	100	
Rate/kHz	100	15	100	
After pulse	2.5×10^{-4}	5×10^{-5}	5×10^{-5}	

2 暗电流特性

InGaAs/InP APD 结构有 p-i-n 型和 SAGCM (Separate absorption grading charge multiplication, SAGCM)型。如图 2(a)是 p-i-n 结构的 APD 器件结构 示意图,图 2(b)为典型的空穴注入型 InGaAs/InP APD 结构示意图,吸收层(InGaAs)和倍增层(InP)分 离结构。SAGCM 结构的光生载流子是空穴,比 p-i-n 结构可以降低器件的噪声,因此 InGaAs/InP APD 一般采用 SAGCM 结构。

图 2 p-i-n 结构(a)和 SAGCM (b)结构 InGaAs/InP APD 器件和电场示意图 Fig.2 Schematic and Electric field diagram of InGaAs/InP APD. The top is(a) p-i-n InGaAs/InP APD and the bottom is (b)SAGCM InGaAs/InP APD

对于 SAGCM 结构,光吸收区和倍增区均采用低 掺杂的 InGaAs 和 InP 材料来降低缺陷浓度和提高少 子寿命,同时可以降低隧穿电流; InP 电场调控层为 n 型掺杂,可以调控倍增层与吸收层电场,使得倍增 层中电场足够大以确保载流子获取雪崩电离的能量, 且调控吸收层的电场在满足载流子的漂移的情况下 尽可能小以减小吸收区的暗电流;缓冲层是为了降低 InGaAs 与 InP 材料的晶格失配,减小 InP 和 InGaAs 材料界面因价带差异而造成的空穴势垒。SAGCM 结 构不同层对器件性能都有影响,因此需要通过器件设 计,获取较好性能器件的结构。

中国科学院上海技术物理研究所曾巧玉^[24]等人 对 InP 倍增层对器件暗电流的影响进行了研究。通过 利用半导体模拟软件 TCAD,将 SRH 复合模型、Auger 复合模型、Hurks 缺陷辅助隧穿模型等带入计算,得 到的结果如图 3 所示^[24]。从图 3(a)可以看到,不同掺 杂浓度的倍增层对器件暗电流的影响。可以发现,倍 增层掺杂浓度越大,对应暗电流就会越大。从图 3(b) 可以看到倍增层掺杂浓度对击穿电压的影响,掺杂浓 度越大,越容易击穿。图 3(c)不同掺杂浓度下暗电流 大小的对比,当器件处于半击穿电压时,暗电流随着 倍增层掺杂浓度的增大而增大;当器件处于 0.95V_b 时,暗电流在倍增层掺杂浓度低于 1×10¹⁶ cm⁻³ 时浓 度的变化不明显,当浓度高于 1×10¹⁶ cm⁻³ 时,暗电 流随着倍增层掺杂浓度的增大而增大。通过对倍增层 掺杂浓度的模拟,可以发现倍增层的材料生长工艺对 器件暗电流大小及击穿电压的调控有非常重要的作 用。

图 3 倍增层掺杂浓度对(a)暗电流,(b)击穿电压和(c)击穿前暗电流大小的影响

Fig.3 Impact of multiplication doping concentration on (a)dark current mechanism, (b)breakthrough voltage and (c)magnitude of current under 0.5 and 0.95 V_b voltages

中国科学院上海技术物理研究所许娇^[25]等人系 统地研究了吸收层、倍增层、p型电极区、电荷控制 层及陷阱浓度对贯穿电压和击穿电压的影响,得到结 果如图4所示^[25]。吸收层厚度对贯穿电压大小没有影 响,但吸收层厚度的增加会使击穿电压变大;倍增层 对贯穿电压和击穿电压都有影响,倍增层厚度增大, 贯穿电压会变大,但击穿电压会先减小后增大;低浓 度的缺陷对击穿电压和贯穿电压的影响不大,当缺陷 浓度超过 2×10¹⁵ cm⁻³时,随着陷阱浓度的增大,击 穿电压会降低,贯穿电压会升高;p 区浓度的增大会 使击穿电压和贯穿电压降低;电荷控制层的面密度增 大会使击穿电压降低,贯穿电压升高;倍增层的掺杂 浓度对贯穿电压的影响不大。

图 4 吸收层、倍增层、p型电极区、电荷控制层及陷阱浓度对贯穿电压和击穿电压的影响

Fig.4 Impact of absorption layer, multiplication layer, p-type contact layer, charge layer and the density of traps on through voltage and breakdown voltage

本章内容介绍了器件结构设计对器件贯穿电压和击穿电压的影响,通过调节倍增层、吸收层的掺杂浓度及厚度,可以有效地调节器件电流-电压特性,从而满足不同需求的 InGaAs/InPAPD 器件。

3 单光子测试电路

单光子探测是用于量子保密通讯的核心技术之一。量子保密通信是基于量子纠缠态的理论,通过量子密钥也就是光子等基本粒子的分发实现的。量子密钥的接收端必须对单个光子具有极高的灵敏性,雪崩光电探测器正是具备这种极佳性能的器件。由于光纤窗口在近红外波段 1.33 μm 和 1.55 μm 具有更低的损耗,信号能够传输更远的距离,而工艺较为成熟的 Si 雪崩光电探测器的探测截止波长在 1 μm 附近,不能实现对低损耗信号的探测。InGaAs/InP 同时具备单光子探测精度又能在低损耗通信窗口有响应,因此它成为了量子保密通信系统中最重要的接收端。 InGaAs/InP 单光子雪崩光电二极管工作在盖格模式下,此时单个光子触发的雪崩效应是具有自持性的。 但如果不让雪崩淬灭,就会导致无法进行下一次探测 甚至烧坏器件,因此需要合适的淬灭电路来实现单光 子的探测^[26]。单光子的淬灭电路有3种模式:被动抑 制、主动抑制和门脉冲控制,电路图如图5所示^[27]。

图 5 被动抑制、主动抑制和门脉冲控制电路示意图 Fig.5 Schematic diagram of passive inhibition, active inhibition

and gate pulse control circuit.

在量子通讯领域,光子到达时间是已知的,故可 采用门脉冲控制电路实现淬灭雪崩。工作原理是器件 所加偏置电压包括直流部分和交流部分,脉冲信号通 过电容传递至器件,实现器件的雪崩和淬灭。但此时 会有较大的尖峰噪声,这些由门控电路中门控效应产 生的尖峰噪声会导致雪崩信号的湮没。因此需要后续 电路从尖峰噪声中获取雪崩信号才能实现单光子探 测。

中科院上海技术物理研究所采用华东师范大学研 制的正弦门控和低通滤波相结合方案测试APD器件的 暗计数,其单光子计数测试电路如图 6(a)所示^[28-29]。 信号发生器发出同步信号,信号经过放大后通过滤波 器降低噪声,再传入加反向高压的单光子测试器件, 与此同时,脉冲激光器在同步信号激励下发出脉冲激 光,脉冲激光经衰减至一个光子的能量后入射至单光 子器件,通过调节延时使得光脉冲与门脉冲对准,即 得到器件光计数,探测器的电流信号经过电阻转化为 电压信号,再经滤波器和放大器传递至示波器或时间 相关单光子计数器 (TCSPC), 可以读取光计数; 当 关掉脉冲激光器,可以读取在设定探测效率下器件的 暗计数。华东师范大学梁焰等人也设计了基于电容平 衡多通道单光子探测方案,如图 6(b)所示,可以实现 低频和高频条件下暗计数的统计,并能降低后脉冲概 率^[29]。通过这些后续单光子器件测试电路的研制,可 以大幅降低尖峰噪声对器件信噪比的影响,并能使单 光子测试频率达到 GHz 之上。

4 新型金属-绝缘体-金属结构

影响 InGaAs/InP 雪崩光电二极管探测性能的主 要原因是暗电流及相应的噪声较大,然而受限于材料 生长、流片及器件的表面处理等因素,暗电流问题始 终难以解决。近些年研究的新型金属-介质层-金属 (metal-insulator-metal, MIM) 结构可以有效地减小器 件面积,并能通过表面等离激元共振效应实现对光的 吸收,将这种 MIM 结构应用在 InGaAs/InP 雪崩光电 二极管上面,可以减小总体缺陷数目,并能实现对近/ 短波红外光的吸收,降低暗电流及噪声,提高器件的 探测性能。图 7 分别展示了两种不同结构的 MIM 设 计,图7(a)^[30]是长方体结构,可以耦合光敏面为矩形 的 APD 器件,此种结构设计可以使器件拥有偏振选 择性,这样的选择性可以使器件对特定偏振光进行响 应,在不加其他偏振选择装置的条件下,实现对偏振 光的探测,可应用于量子通信接收端完成对偏振编码 的解码功能;图7(b)是圆柱结构,可以耦合目前大部 分光敏面为圆型的 APD 器件。

中国科学院上海技术物理研究所温洁^[30-31]等人 设计了适用于如图 7(a)所示 InGaAs/InP 雪崩光电二极 管的 MIM 结构。顶部金属采用了 Au 金属栅,中间采 用了 SiN_x绝缘层,底层采用的是有双缝 Au 金属层, 侧面是 Au 板,形成一个 MIM 结构的微腔,这个 MIM 结构下是 InP 电极。

通过 FDTD 模拟,得到了 MIM 结构在不同单个 光栅宽度 d (金属阵列单元宽度)及光栅周期 p (金 属阵列单元宽度与狭缝宽度之和)下入射光的透射 率,如图 8 所示^[30],可以看到通过调节光栅宽度及光 栅周期实现 1.55 μm 的近红外光透过。当调节光栅周 期 p 使之增大时,投射率发生红移;当调节光栅宽度 d 使之增大时,投射率也发生红移但是不如调节光栅 周期时明显。

在实验上,实验人员首先在石英衬底上通过电子

束光刻,实现对 Au 光栅的精准制备,中间层利用等 离子体增强化学气相沉积生长绝缘层 SiN_x,然后通过 刻蚀形成凹槽,通过 Au 的沉积实现侧板的制备,最 后同样利用电子书光刻实现双缝 Au 底板的制备。图 9(a)展示的是 MIM 结构 SEM 图,图 9(b)和(c)^[31]分别 展示了不同光栅宽度及光栅周期所测的透射光谱。可 以看到,MIM 结构微腔可以实现对 1.55 μm 的近红外 光透过,可以应用于 InGaAs/InP 雪崩光电探测器。

图 9 实验制备 MIM 器件性能: (a)顶层 Au 光栅 SEM 图; (b)不同光栅周期宽度透射光谱; (c) 不同光栅宽度透射光谱

Fig.9 Performance of experimental MIM device: (a) SEM of Au grating; measured transmission of different grating widths (b) and periods (c)

5 总结

InGaAs/InP 雪崩光电二极管是近红外波段具有 单光子探测能力的重要探测器。本文系统地介绍了雪 崩探测器的原理及暗电流机制。通过分析具有 SAGCM 结构器件的吸收层、倍增层和电荷控制层等 对暗电流的影响,揭示了器件设计对击穿电压及贯穿 电压的影响规律。并且介绍了几种典型的单光子测试 电路,综述了 InGaAs/InP 器件的单光子测试能力及暗 计数的影响规律。最后介绍了新型 MIM 结构的设计 和制备,展示了这种人工微结构对提高 InGaAs/InP 雪 崩光电探测器性能的潜在应用。

参考文献:

- [1] Joseph C. Passive infrared detection: theory and application[M]. *Kluwer academic publishers*, 1999: 225.
- [2] Jiang X, Itzler M A, Ben Michael R, et al. InGaAsP-InP Avalanche Photodiodes for Single Photon Detection[J]. *IEEE Journal of Selected Topics in Quantum Electronics*, 2007, **13**(4):895-905.
- [3] WANG Jianlu, FANG Heihai, WANG Xudong, et al. Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet-Visible to Infrared[J]. Small, 2017, 13(35): 1700894.
- [4] Lacaita A, Francese P A, Zappa F, et al. Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes[J]. *Applied Optics*, 1994, **33**(30): 6902-6918.
- [5] Kang Y, Mages P, Clawson A R, et al. Fused InGaAs-Si avalanche photodiodes with low-noise performances[J]. *IEEE Photonics Technology Letters*, 2002, 14(11): 1593-1595.
- [6] QING Li, BAI JIE, LV Yanqiu, et al. Analysis of ultraviolet and infrared dual-color focal-plane arrays detector based on Pt/CdS and InSb junctions[J]. J. Infrared Millim. Waves, 2017, 36(4): 385-388.
- [7] GONG F, FANG H H, WANG P, et al. Visible to near-infrared photodetectors based on MoS₂ vertical Schottky junctions[J]. *Nanotechnology*, 2017, 19(3): 48.
- [8] WANG Peng, LIU Shanshan, LUO Wenjin, et al. Arrayed Van Der Waals Broadband Detectors for Dual-Band Detection[J]. Advanced Materials, 2017, 29(16): 1604439.
- [9] WU B H, XIA G Q, LI Z H, et al. Sulphur passivation of the InGaAsSb/GaSb photodiodes[J]. Applied Physics Letters, 2002, 80(7): 1303-1305.
- [10] WANG X D, HU W D, CHEN X S, et al. Dark current simulation of InP/In_{0.53}Ga_{0.47}As/InP p-i-n photodiode[J]. Optical & Quantum Electronics, 2008, 40(14-15): 1261-1266.
- [11] 郝国强. InGaAs 红外探测器器件与物理研究[D]. 上海: 中科院上海 微系统与信息技术研究所, 2006.
 HAO Guoqiang. Study on Physics and Devices of InGaAs Infrared Detectors, Shanghai: Shanghai Institute of Microsystem and Information Technology, 2006)
- [12] Porod W, Ferry D K. Modification of the virtual-crystal approximation for ternary III-V compounds[J]. *Physical Review B Condensed Matter*, 1983, **27**(4): 2587-2589.
- [13] Itzler M A, Patel K, Jiang X, et al. Comparison of 32×128 and 32×32 Geiger-mode APD FPAs for single photon 3D LADAR imaging[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2011, 8033(3): 80330G-1-80330G-12.
- [14] Verghese S, Donnelly J P, Duerr E K, et al. Arrays of InP-based Avalanche Photodiodes for Photon Counting[J]. IEEE Journal of

Selected Topics in Quantum Electronics, 2007, 13(4): 870-886.

- [15] Isoshima T, Isojima Y, Hakomori K, et al. Ultrahigh sensitivity single photon detector using a Si avalanche photodiode for the measurement of ultra weak biochemilumine scence[J]. *Review of Scientific Instruments*, 1995, 66(4): 2922-2926.
- [16] LIAO S K, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution[J]. *Nature*, 2017, 549(7670): 43-47.
- [17] REN J G, XU P, YONG H L, et al. Ground-to-satellite quantum teleportation[J]. *Nature*, 2017, 549(7670): 70-73.
- [18] Mcintyre R J. Multiplication noise in uniform avalanche diodes[J]. IEEE Transactions on Electron Devices, 1966, 13(1):164-168.
- [19] Cook L W, Bulman G E, Stillman G E. Electron and hole impact ionization coefficients in InP determined by photo multiplication measurements[J]. *Applied Physics Letters*, 1982, 40(7): 589-591.
- [20] Stillman G E, Wolfe C M. Avalanche photodiodes, in Semiconductors and Semimetals[M]. New York:Academic,1977: 291-393.
- [21] HU W D, CHEN X S, YIN F, et al. Analysis of temperature dependence of dark current mechanisms for long-wavelength HgCdTe photovoltaic infrared detectors[J]. *Journal of Applied Physics*, 2009, **105**(10): 104502-104502-8.
- [22] Forrest S R, Leheny R F, Nahory R E, et al. In_{0.53}Ga_{0.47}As photodiodes with dark current limited by generation-recombination and tunneling[J]. *Applied Physics Letters*, 1980, **37**(3): 322-325.
- [23] 尼曼. 半导体物理与器件[M]. 北京: 电子工业出版社, 2013: 139.
 Neamen. Semiconductor physics and devices[M]. Beijing: Publishing House of Electronics Industry, 2013:139.
- [24] ZENG Q Y, WANG W J, HU W D, et al. Numerical analysis of multiplication layer on dark current for InGaAs/InP single photon avalanche diodes[J]. Optical & Quantum Electronics, 2014, 46(10): 1203-1208.
- [25] XU J, CHEN X, WANG W, et al. Extracting dark current components and characteristics parameters for InGaAs/InP avalanche photodiodes[J]. *Infrared Physics & Technology*, 2016, **76**: 468-473.
- [26] 曾巧玉. InGaAs/InP 单光子雪崩光电二极管的制备及研究[D]. 上海: 中科院上海技术物理研究所, 2014.
 ZENG Qiaoyu. Fabrication and Study of InGaAs/InPAvalanche photodiodes(APDs)[D]. Shanghai: Shanghai institute of technical physics, Chinese Academy of Sciences, 2014.
- [27] 梁焰. 基于 InGaAs/InPAPD 高速单光子探测方法及应用[D]. 上海: 华东师范大学, 2014.
 LIANG Yan. High-speed single-photon detection based InGaAs/InP APD and its applications[D]. Shanghai: East China Normal University, 2014.
- [28] 白郭敏,梁焰,曾和平. 基于国产的 InGaAs/InPAPD 的高速单光子探测[J]. 电子测量技术, 2017, 40:6.
 BAI Guomin, LIANG Yan, ZENG Heping, High-speed single-photon detection based on domestic InGaAs/InP APD[J]. *Electronic Measurement Technology*, 2017, 40:6.
- [29] LIANG YAN, JIAN Yi, CHEN Xiuliang, et al. Room-Temperature Single-Photon Detector Based on InGaAs/InP Avalanche Photodiode With Multichannel Counting Ability[J]. *IEEE Photonics Technology Letters*, 2010, 23(2):115-117.
- [30] WEN J, WANG W J, LI N, et al. Light enhancement by metal-insulatormetal plasmonic focusing cavity[J]. Optical & Quantum Electronics, 2016, 48(2):150.
- [31] WEN J, WANG W J, LI N, et al. Plasmonic optical convergence microcavity based on the metal-insulator-metal microstructure[J]. *Applied Physics Letters*, 2017, **110**(23): 187901-62.