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Motivation for single photon detectors

Examples of photon counting applications for λ > 1.0 – 1.7 μm:

Communications
• Secure communications (e.g., quantum key distribution)

• Free space optical communication in photon-starved applications

Remote sensing
• 3-D Imaging

• Lidar / atmospheric sensing

Industrial and Biomedical
• Semiconductor diagnostics

• Single photon fluorescence (e.g., quantum dot markers)
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SPC Application:  Next-gen Communications

Secure Communications through Quantum Key Distribution

Long-range Free Space Communications

• Single photon sensivity for 
photon-starved communication links

• “N bits per photon” protocols

Alice

Bob

Eve

JPL Optical 
Communications Group –

vision of free space comm

• Use quantum properties 
of single photons to 
establish encryption keys
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SPC Application:  3-D Imaging

Perform ladar (“laser radar”) measurement at every pixel of array
• Obtain time-of-flight information at every pixel to calculate “depth”
• Allows imaging through obscuring elements (e.g., foliage, netting, etc.)

Image of scene beneath foliage (e.g., vehicles, picnic tables)

B. Aull, et al., SPIE 5353, 
p. 105 (2004)



7

SPC Application:  Atmospheric Lidar

NASA ICESat/GLAS

Ice, Cloud, and land Elevation Satellite
on the

Geoscience Laser Altimeter System

Atmospheric mapping by lidar along Earth’s circumference
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SPC Application:  Semiconductor diagnostics

Time-resolved photon counting to 
measure CMOS hot carrier luminescence
• circuit design and debugging
• circuit failure analysis
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InGaAsP/InP avalanche diode design platform

Separate Absorption, Charge, and Multiplication (SACM) structure
• High E-field in multiplication region → induce avalanching 
• Low E-field in absorption region → suppress tunneling

Planar passivated, dopant diffused device structure
• Stable and reliable buried p-n junction
• Widespread deployment of device platform in telecom Rx

i-

n+-InP buffer

n-InGaAsP grading
n-InP charge

i-InP cap

SiN x passivationp-contact metallization

n+-InP substrate
anti -reflection coating n-contact metallization

optical input

Electric field

InGaAs  or  i-InGaAsP absorption

multiplication region

p+-InP diffused region
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APD Current-Voltage Characteristics

Linear mode performance is behavior below breakdown voltage Vb

• Output photocurrent below Vb is linearly proportional to input optical power

“Linear” gain

Breakdown 
voltage Vb
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Performance uniformity at wafer level

Breakdown voltage is very sensitive to structural details
• Provides good measure for consistency of many device attributes

4 12 20 28 36 44 52 60 68 76 84 92 10
0

10
8

11
6

12
4

3

8

1 3

1 8

2 3

2 8

3 3

3 8

4 3

4 8

5 3

5 8

6 3

6 8

7 3

7 8

8 3

8 8

9 3

9 8

1 0 3

1 0 8

1 1 3

1 1 8

1 2 3 9 0 .6 -9 1
9 0 .2 -9 0 .6
8 9 .8 -9 0 .2
8 9 .4 -8 9 .8
8 9 -8 9 .4
8 8 .6 -8 9
8 8 .2 -8 8 .6
8 7 .8 -8 8 .2
8 7 .4 -8 7 .8
8 7 -8 7 .4

Column  37
53

69

• Ex.:  1.06 μm SPAD wafer

• Intentional systematic variation to 
confirm diffusion control process

• Vb variation:  ~ 0.03 V per mm 

88

89

90

91

10 30 50 70 90 110 130
Row Number

B
re

ak
do

w
n 

Vo
lta

ge
 (V

)

COL 37
COL 53

COL 69

40 mm



13

Presentation outline

Motivation for single photon detectors

Overview of Geiger-mode avalanche photodiodes

Geiger-mode operation 

Present performance and challenges

Dark count rate

Afterpulsing effects

Conclusions



14

Geiger mode operation

Single photon avalanche diodes (SPADs) operate in “Geiger mode”
• Bias above breakdown voltage Vb by overbias ΔV

• Single photon induces avalanche leading to macroscopic current pulse
– Avalanche detected using threshold detection circuit

• Used as a photon-activated switch with purely digital output

• Avalanche must be quenched after detection by lowering bias below Vb

Vb Vb+ΔV
V

I

“arm”
“avalanche”

“quench”

“avalanche”I(t)

“arm” “quench”
Vb

Vb+ΔV
V(t)
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Geiger mode quenching schemes

Free-running operation
• SPAD is “armed” (biased above breakdown) until avalanche occurs

Gated-mode operation
• Most relevant operation for InP-based SPADs
• Periodic arming and disarming of the SPAD

• Short gates (~1 ns) are ideal if photon arrival is deterministic (e.g., communications)

1 - 100 ns ≳ 1 μs

Vb
ΔV

Hold-off 
time

Passive reset

Active reset
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SPAD performance parameters

Detection efficiency (DE): probability of detecting incident photon 

Dark count rate (DCR): probability of “false” detection (no incident photon)

Afterpulsing (AP): increase in dark count rate following previous detection
• Mitigated only by limiting repetition rate

Timing jitter (TJ): randomness in detection timing

Important performance trade-offs to be managed

• Increase overbias:  DE ☺ , TJ ☺ , DCR ☹
• Decrease temperature:  DCR ☺ , AP ☹
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DCR vs. DE trade-off

Most important SPAD performance tradeoff:  DCR vs. DE
Typical performance:  10 kHz DCR at 20% DE, 100 kHz at 40% DE
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Photon Detection Efficiency

Detection efficiency:  DE = ηabs × ηcoll × Pa

• ηabs :  probability of photon absorption (i.e., quantum efficiency)
• ηcoll :  probability of carrier injection to multiplication region
• Pa :  probability that injected carrier initiates self-sustaining avalanche

i-InGaAs or i-InGaAsP absorption

n+-InP buffer

n-InGaAsP grading
n-InP charge

i-InP cap

p + - InP diffused region
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n+-InP substrate
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Timing Jitter

Factors contributing to timing jitter:
• Absorption location (through varying transit time)
• Carrier propagation delay at interfaces
• Avalanche build-up time (vertical and lateral)

SPAD capability generally < 100 ps
• Electronics design is critical to TJ performance

i-InGaAs absorption
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Dark count rate behavior and mechanisms

Dark carriers can be generated by a number of mechanisms

Sample properties will have a large impact on DCR
• Bandgap (InP vs. InGaAs vs. InGaAsP)
• Defects

Study DCR dependence on temperature and bias for clues
• Extract activation energies to help identify dominant DCR mechanisms

Other “combined” 
processes not 
considered

Ec

Ev

②

①
① thermal generation-recombination

③

③ trap-assisted tunneling

② band-to-band tunneling
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Dark count rate behavior and mechanisms

Characterize DCR vs. temperature at different overbias for T < 220 K
• Assume  DCR ~ exp(-Ea/kT)  to extract activation energy Ea
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Dark count rate behavior and mechanisms

DCR vs. temperature at different overbias for T > 200 K
• Can not fit with fixed Ea for T ≳ 220 K 
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Dark count rate behavior and mechanisms

Consider temperature dependence of DCR activation energy Ea,DCR
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– thermal generation more significant at low overbias
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DCR mechanisms for 1.06 μm SPADs

Simulations give insight into dominant DCR mechanisms
• following formalism of Donnelly et al.  [JQE 42, p. 797 (2006)]

At low temp, multiplication region trap-assisted tunneling dominates
At room temp, two mechanisms compete

• absorption region thermal generation dominates at low bias
• multiplication region trap-assisted tunneling dominates at high bias
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Dark count rate modeling for 1.5 μm SPADs

DCR modeling is more complicated for 1.5 μm SPADs 
First attempts at fitting DCR vs. DE at 1.5 μm are encouraging

• Fit parameters are similar to those used for 1.06 μm SPADs
• For 1.5 μm, thermal and tunneling contributions are comparable even at low temp

• Simulations very sensitive to defect attributes
• Need appropriate materials analysis (e.g., DLTS/capacitive spectroscopy)
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Description of afterpulsing

Afterpulsing is most serious limitation of InP SPADs; limits repetition rate
Avalanche carriers temporarily trapped at defects in InP multiplication region 

Carrier de-trapping at later times can initiate “afterpulse” avalanches
• Afterpulsing likely if “hold-off” times Th-o ≲ detrapping time τd

afterpulses
short hold-off 

time

# of trapped 
carriers 

trap sites located in 
multiplication region

Ec

Ev

# of trapped 
carriers 

Long hold-off 
time

primary 
avalanche
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Impact of afterpulsing on count rates

Assess impact of afterpulsing through DCR dependence on hold-off time
• Looking at afterpulses induced by dark counts only
• Sharp rise in DCR at short Th-o due to afterpulsing

Biasing scheme

• 40 μm diameter SPADs
• periodic gated operation
• 20 ns gates
• 6 V overbias
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Universal scaling of afterpulse behavior

Normalize to background DCR
DCR vs. Th-o curves collapse to a single curve with correct rescaling

• Same curve shape up to temperature-dependence scale factor for Th-o

Collapse allows extraction of afterpulsing activation energy
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Afterpulsing activation energy Ea,AP

Use DCR vs Th-o curve collapse to find afterpulse activation energy
• Assuming single detrapping time τd , inverse of scale factor ∝ τd

• Plot against 1/kT to extract activation energy Ea,AP
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Temperature dependence of Ea,AP

Extract Ea,AP(T) to determine trends in afterpulsing behavior
• Using very different gate durations, still find consistent trend
• Ea,AP very small (≲ 0.1 eV) for T < 200 K), increases for T > 220 K
• Suggests that scaling may not hold above 220 K – need confirmation
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Afterpulsing model fit to gated operation data

Use model of Kang et al. to fit measured DCR vs. Th-o data
• Model includes probability of de-trapping from all previous gates
• Initial model assumed single trap; we have added additional traps
• For 220 K, model yields τd ~ 15 μs using single trap
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Problem of detrapping times

Recent results related to de-trapping times in InP is quite varied
• Fundamental question for modeling:  single trap vs. multiple traps

– Multiple traps:  too many free parameters, or correct physics?

• De-trapping times found will depend on range of hold-off times Th-o used
– For narrow range of Th-o (< 10X), see just one de-trapping time from RAP(t)
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Afterpulsing and Carrier Trapping Mitigation

Impact on afterpulsing from:  materials properties
• Extract basic properties (trap levels & densities) from measurable quantities (τd , Ea)
• Materials improvements are challenging  [ref: Si SPAD hold-off times: ~100 ns]

Impact on afterpulsing from:  operating conditions
• Key factor is total charge flow through device – reduce charge flow per avalanche

– Overbias, quenching conditions, short gates (where possible)
• Higher temperature reduces afterpulsing
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Conclusions

Present DCR vs. DE:  ~10 kHz at 20% at 1.5 μm, T ~ 215 K, 25 μm dia.

Temp-dependent DCR activation energy gives insight into mechanisms
• Shift from thermal processes at room temperature to tunneling for T < 220 K
• Good simulations should reproduce Ea,DCR(T) behavior

Initial simulations provide good description of DCR vs. DE behavior
• Valuable for understanding relative contributions of different DCR mechanisms
• Need better information regarding defects and thermal+tunneling mechanisms

Afterpulsing is key limitation for high counting rates
• Activation energy is constant at low temp, changes at T > 240 K
• Collapse of DCR vs. hold-off time curves indicates universal behavior for T < 220
• Determination of number of trap types and lifetimes is key to accurate modeling
• Reduce charge flow per avalanche to reduce afterpulsing


