

Geiger-Mode Avalanche Photodiodes for Near-Infrared Photon Counting

Mark Itzler

Princeton Lightwave Inc., Cranbury, NJ USA

CLEO/QELS 2007 – Baltimore, MD

PLI CO-AUTHORS: Xudong Jiang, Rafael Ben-Michael, Krystyna Slomkowski

COLLABORATORS for device characterization: Bruce Nyman.....PL/ Mark Entwistle

Mike Krainak.....NASA/GSFC Stewart Wu Xiaoli Sun

Sergio Cova......Politecnico di Milano Alberto Tosi Franco Zappa

Radu Ispasoiu.....Credence Systems

Gary Smith......MIT Lincoln Laboratories

Gerald Buller..... Heriot-Watt University Sara Pelligrini

- > Motivation for single photon detectors
- > Overview of Geiger-mode avalanche photodiodes
- Geiger-mode operation
- Present performance and challenges
 - Dark count rate
 - > Afterpulsing effects
- Conclusions

Examples of photon counting applications for $\lambda > 1.0 - 1.7 \mu m$:

Communications

- Secure communications (e.g., quantum key distribution)
- Free space optical communication in photon-starved applications

Remote sensing

- 3-D Imaging
- Lidar / atmospheric sensing

Industrial and Biomedical

- Semiconductor diagnostics
- Single photon fluorescence (e.g., quantum dot markers)

SPC Application: Next-gen Communications

Secure Communications through Quantum Key Distribution

 Use quantum properties of single photons to establish encryption keys

Detection

filter

Eve

Long-range Free Space Communications

- Single photon sensivity for photon-starved communication links
- "N bits per photon" protocols

JPL Optical Communications Group – vision of free space comm

> Perform ladar ("laser radar") measurement at every pixel of array

- Obtain time-of-flight information at every pixel to calculate "depth"
- Allows imaging through obscuring elements (e.g., foliage, netting, etc.)

Image of scene beneath foliage (e.g., vehicles, picnic tables)

B. Aull, et al., SPIE <u>5353</u>, p. 105 (2004)

SPC Application: Atmospheric Lidar

NASA ICESat/GLAS

Ice, Cloud, and land Elevation Satellite on the Geoscience Laser Altimeter System

SPC Application: Semiconductor diagnostics

Motivation for single photon detectors

> Overview of avalanche photodiode structure

- ➢ Geiger-mode operation
- Present performance and challenges
 - Dark count rate
 - Afterpulsing effects
- Conclusions

> Separate Absorption, Charge, and Multiplication (SACM) structure

- High E-field in multiplication region \rightarrow induce avalanching
- Low E-field in absorption region \rightarrow suppress tunneling

> Planar passivated, dopant diffused device structure

- Stable and reliable buried p-n junction
- Widespread deployment of device platform in telecom Rx

- \succ Linear mode performance is behavior below breakdown voltage V_b
 - Output photocurrent below V_b is linearly proportional to input optical power

Performance uniformity at wafer level

- Breakdown voltage is very sensitive to structural details
 - Provides good measure for consistency of many device attributes

- Motivation for single photon detectors
- Overview of Geiger-mode avalanche photodiodes
- Geiger-mode operation
- Present performance and challenges
 - Dark count rate
 - Afterpulsing effects
- Conclusions

> Single photon avalanche diodes (SPADs) operate in "Geiger mode"

- Bias above breakdown voltage V_b by overbias ΔV
- Single photon induces avalanche leading to macroscopic current pulse
 - Avalanche detected using threshold detection circuit
- Used as a photon-activated switch with purely digital output
- Avalanche must be quenched after detection by lowering bias below V_b

Geiger mode quenching schemes

> Free-running operation

• SPAD is "armed" (biased above breakdown) until avalanche occurs

• Short gates (~1 ns) are ideal if photon arrival is deterministic (e.g., communications)

- > **Detection efficiency (DE):** probability of detecting incident photon
- > **Dark count rate (DCR):** probability of "false" detection (no incident photon)
- > Afterpulsing (AP): increase in dark count rate following previous detection
 - Mitigated only by limiting repetition rate
- > Timing jitter (TJ): randomness in detection timing
- Important performance trade-offs to be managed
 - Increase overbias: DE ☺ , TJ ☺ , DCR ☺
 - Decrease temperature: DCR 🙂 , AP 😣

- > Most important SPAD performance tradeoff: DCR vs. DE
- Typical performance: 10 kHz DCR at 20% DE, 100 kHz at 40% DE

Data for 25 µm diameter InGaAs/InP SPADs for 1.5 µm

> Detection efficiency: $DE = \eta_{abs} \times \eta_{coll} \times P_a$

- η_{abs} : probability of photon absorption (i.e., quantum efficiency)
- η_{coll} : probability of carrier injection to multiplication region
- P_a: probability that injected carrier initiates self-sustaining avalanche

Timing Jitter

- Factors contributing to timing jitter:
 - Absorption location (through varying transit time)
 - Carrier propagation delay at interfaces
 - Avalanche build-up time (vertical and lateral)
- SPAD capability generally < 100 ps</p>
 - Electronics design is critical to TJ performance

Critical interface for

- Motivation for single photon detectors
- Overview of Geiger-mode avalanche photodiodes
- Geiger-mode operation
- Present performance and challenges
 - Dark count rate
 - Afterpulsing effects
- Conclusions

Dark count rate behavior and mechanisms

Dark carriers can be generated by a number of mechanisms

- Sample properties will have a large impact on DCR
 - Bandgap (InP vs. InGaAs vs. InGaAsP)
 - Defects
- Study DCR dependence on temperature and bias for clues
 - Extract activation energies to help identify dominant DCR mechanisms

> Characterize DCR vs. temperature at different overbias for T < 220 K

• Assume DCR ~ $exp(-E_a/kT)$ to extract activation energy E_a

- > DCR vs. temperature at different overbias for T > 200 K
 - Can not fit with fixed E_a for $T \gtrsim 220$ K

change in $E_a \rightarrow$ change in dark carrier generation mechanism

> Consider temperature dependence of DCR activation energy E_{a.DCR}

- For T \leq 230, low $E_{a, DCR} \rightarrow$ tunneling mechanisms
- + For T \gtrsim 230, increasing $\rm E_{a,\,DCR} \rightarrow$ thermal generation becomes important
 - thermal generation more significant at low overbias

DCR mechanisms for 1.06 µm SPADs

- Simulations give insight into dominant DCR mechanisms
 - following formalism of Donnelly et al. [JQE 42, p. 797 (2006)]
- > At low temp, multiplication region trap-assisted tunneling dominates
- > At room temp, two mechanisms compete
 - absorption region thermal generation dominates at low bias
 - multiplication region trap-assisted tunneling dominates at high bias

- > DCR modeling is more complicated for 1.5 µm SPADs
- First attempts at fitting DCR vs. DE at 1.5 µm are encouraging
 - Fit parameters are similar to those used for 1.06 μm SPADs
 - For 1.5 µm, thermal and tunneling contributions are comparable even at low temp

• Simulations very sensitive to defect attributes

• Need appropriate materials analysis (e.g., DLTS/capacitive spectroscopy)

- Motivation for single photon detectors
- Overview of Geiger-mode avalanche photodiodes
- Geiger-mode operation
- Present performance and challenges
 - Dark count rate
 - > Afterpulsing effects
- Conclusions

Description of afterpulsing

Afterpulsing is most serious limitation of InP SPADs; limits repetition rate

- > Avalanche carriers temporarily trapped at defects in InP multiplication region
- Carrier de-trapping at later times can initiate "afterpulse" avalanches
 - Afterpulsing likely if "hold-off" times $T_{h\text{-}o} \lesssim$ detrapping time τ_d

Ton

> Assess impact of afterpulsing through DCR dependence on hold-off time

- Looking at afterpulses induced by dark counts only
- Sharp rise in DCR at short T_{h-o} due to afterpulsing

Universal scaling of afterpulse behavior

- Normalize to background DCR
- \succ DCR vs. T_{h-o} curves collapse to a single curve with correct rescaling
 - Same curve shape up to temperature-dependence scale factor for T_{h-o}

Collapse allows extraction of afterpulsing activation energy

- Use DCR vs T_{h-o} curve collapse to find afterpulse activation energy
 - Assuming single detrapping time τ_{d} , inverse of scale factor $\propto \tau_{d}$
 - Plot against 1/kT to extract activation energy E_{a.AP}

- As with DCR, see if E_{a,AP} depends on temperature
 - Consider data from additional measurements

> Extract E_{a.AP}(T) to determine trends in afterpulsing behavior

- Using very different gate durations, still find consistent trend
- + $E_{a,AP}$ very small ($\lesssim 0.1 \text{ eV}$) for T < 200 K), increases for T > 220 K
- Suggests that scaling may not hold above 220 K need confirmation

Use model of Kang et al. to fit measured DCR vs. T_{h-o} data

- Model includes probability of de-trapping from all previous gates
- Initial model assumed single trap; we have added additional traps
- For 220 K, model yields $\tau_d \sim 15 \ \mu s$ using single trap

Kang, Lu, Lo, Bethune, Risk, APL <u>83</u>, p. 2955 (2003).

ahtwave

Princeton

10000 • 150K Solid curves: simulation ▲ 175K 1000 = 200K Normalized DCR + 220K 100 10 1 10 100 1 Hold-off Time (µs)

Recent results related to de-trapping times in InP is quite varied

- Fundamental question for modeling: single trap vs. multiple traps
 - Multiple traps: too many free parameters, or correct physics?
- De-trapping times found will depend on range of hold-off times T_{h-o} used
 - For narrow range of T_{h-o} (< 10X), see just one de-trapping time from $R_{AP}(t)$

$$R_{AP}(t) = \frac{N_1}{\tau_1} e^{-t/\tau_1} + \frac{N_2}{\tau_2} e^{-t/\tau_2} + \frac{N_3}{\tau_3} e^{-t/\tau_3} + \dots$$

Double-pulse ("pump-probe") method:

Authors	Temperature	Hold-off time	Detrapping times [µs]				Tachnique
	[K]	[µs]	τ_1	τ_2	τ_3	$ au_4$	rechnique
PLI/NASA	250	0.14 - 0.46	0.07				free-running
Jensen <i>et al.</i>	250	1.0 – 10		0.9			double-pulse
Liu <i>et al.</i>	220 – 240	0.02 – 50	0.15	1.0	5	45	double-pulse
Trifonov <i>et al.</i>	195 – 230	1.25 – 100		0.5	6	100	double-pulse
PLI (this work)	200 – 220	4 – 1000			~15	~150	DCR vs. T _{h-o} scaling

- Impact on afterpulsing from: materials properties
 - Extract basic properties (trap levels & densities) from measurable quantities (τ_d , E_a) •
 - Materials improvements are challenging [ref: Si SPAD hold-off times: ~100 ns] ٠
- Impact on afterpulsing from: operating conditions
 - Key factor is total charge flow through device reduce charge flow per avalanche
 - Overbias, guenching conditions, short gates (where possible)
 - Higher temperature reduces afterpulsing

Present DCR vs. DE: ~10 kHz at 20% at 1.5 μm, T ~ 215 K, 25 μm dia.

Temp-dependent DCR activation energy gives insight into mechanisms

- Shift from thermal processes at room temperature to tunneling for T < 220 K
- Good simulations should reproduce E_{a,DCR}(T) behavior

> Initial simulations provide good description of DCR vs. DE behavior

- Valuable for understanding relative contributions of different DCR mechanisms
- Need better information regarding defects and thermal+tunneling mechanisms

> Afterpulsing is key limitation for high counting rates

- Activation energy is constant at low temp, changes at T > 240 K
- Collapse of DCR vs. hold-off time curves indicates universal behavior for T < 220
- Determination of number of trap types and lifetimes is key to accurate modeling
- Reduce charge flow per avalanche to reduce afterpulsing